
THE SYNTHESIS OF 1,1'-(1,2-ETHENEDIYLIDENE)BIS(5,10-DIMETHYLCYCLOTRIDECA-2,4,10,12-TETRAENE-6,8-DIYNE), A MACROCYCLIC FULVALENE CONTAINING A CUMULENE LINKAGE 1

Luciano Lombardo and Franz Sondheimer

Chemistry Department, University College, Gordon Street, London WClH OAJ

(Received in UK 6 August 1976; accepted for publication 16 August 1976)

Although bicyclic fulvalenes of type $\underline{1}$ are well known, the only homologues containing an allene (type $\underline{2}$) or cumulene (type $\underline{3}$) linkage between the two rings to be prepared until

now all contain additional fused benzene rings.² We now report the symthesis of the title compound (6), the first example of a non-annelated fulvalene derivative of type 3, which proved to be a surprisingly stable substance.

Grignard reaction of 5,10-dimethyl-6,8-bisdehydro[13]annulenone $4^{-3,4}$ with an excess of acetylenedimagnesium bromide (prepared in benzene, followed by decantation) in tetrahydro-furan at room temp for 2.5 hr gave 45% of the diol 5^{-6a} as a colourless powder, which decomposed above 170° on attempted mp determination; 7^{a} m/e 442; λ_{max} (CHCl₃) 263 (ϵ 27,800), 329 nm (9300); ν_{max} (KBr) 2175w (C=C), 1180m, 1100m (C=OH), 968m, 955s (ϵ 1 trans C=C) cm⁻¹; ϵ 1 H-nmr (THF- ϵ 1, 100Mz) ϵ 3.26 (m, ϵ 1, 3 = 4Hz, ϵ 1, 5Hz, H⁴), 3.70 (two m, ϵ 1, 2 = 1.5Hz, ϵ 1, 3 = 1.5Hz, ϵ 1, 8.04 (finely split s, CH₃). The indicated conformation of ϵ follows from the ϵ 1 H-nmr chemical shifts and ϵ 1 values, which are similar to those of the alcohol ϵ obtained by the reduction of the keto group of ϵ 1.

Reduction of the diol $\underline{5}$ with SnCl_2 . $2\mathrm{H}_2\mathrm{O}$ and HCl gas in ether 8 at 0° for 2 hr led to the cumulene $\underline{6}^{6b}$ in 65% yield as sparingly soluble dark blue-green prisms showing a metallic lustre (violet in CHCl₃ solution), which decomposed above 130° on attempted mp determination; 7b

m/e 408; λ_{max} (CHCl₃) 284 (€ 30,100), 566nm (83,500); ν_{max} (KBr) 2130m (CEC), 960m (trans C=C) cm⁻¹; ${}^{1}\text{H-nmr}$ [CS₂, CD₂Cl₂ (2:1); 90MHz, FT, 1000 scans] τ 2.11 (dd, $\underline{J}_{3,2}$ = 16 Hz, $\underline{J}_{3,4}$ = 11 Hz, H³), 3.53 (d, $\underline{J}_{4,3}$ = 11Hz, H⁴), 3.73 (d, $\underline{J}_{2,3}$ = 16Hz, H²), 8.15 (s, CH₃). That 6 possesses the same conformation as $\underline{4}$ 3.4 follows from the ${}^{1}\text{H-nmr}$ chemical shifts and \underline{J} values. As expected, the ${}^{1}\text{H-nmr}$ spectrum of 6 gives no indication of any appreciable ring current.

The cumulene $\underline{6}$ could be kept in the solid state for several days with no apparent decomposition, and CHCl $_{\overline{5}}$ solutions showed no appreciable change (electronic spectrum) after 1 month at room temp without protection from light or air.

Acknowledgments. We thank the Science Research Council for financial support, Hoffmann-La Roche, Basel, for a gift of "cis"-3-methylpent-2-en-4-yn-1-ol, and Dr. D.A. Couch, Kings College, London, for the determination of the FT lH-nmr spectrum.

REFERENCES AND NOTES

- 1. Unsaturated Macrocyclic Compounds. CXIX. For part CXVIII, see T.M. Cresp and F. Sondheimer, J. Amer. Chem. Soc., in the press.
- 2. For references, see E.D. Bergmann, Chem. Rev., 68, 41 (1968).
- J. Ojima and F. Sondheimer, Abstracts of papers, 30th Annual Meeting of the Chemical Society of Japan, Osaka, April, 1974; T.M. Cresp, J. Ojima and F. Sondheimer, to be published.
- 4. R.L. Wife and F. Sondheimer, <u>J. Amer. Chem. Soc.</u>, <u>97</u>, 640 (1975).
- 5. Inter al., see R. Ahmad, F. Sondheimer, B.C.L. Weedon and R. Woods, J. Chem. Soc., 4089 (1952); P. Mildner and B.C.L. Weedon, ibid., 3294 (1953).
- 6. Isolated by chromatography on (a) Al₂O₃ (Woelm, act. III); (b) silica gel (Woelm, act. III).
- 7. <u>Anal.</u> (a) Calcd. for $C_{32}H_{26}O_2$: C, 86.88; H, 5.88. Found: C, 86.51; H, 5.94; (b) Calcd. for $C_{32}H_{24}$: C, 94.12; H, 5.88. Found: C, 93.91; H, 5.97.
- 8. Inter al., see R. Kuhn and H. Krauch, Chem. Ber., 88, 309 (1955).